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EFFECT OF ARTIFICIAL STABILITY ON AIRCRAFT PERFORMANCE *

D. Reich
Messerschmitt-BSlkow-Blohm GmbH, Ottobrunn, West Germany

1. CCV Concepts /171%%

For the past several yeans, efforts have been made in the
International aviation industry to make use of the possibilities
of automatic flight control in a somewhat more eonsistent manner.
Until now, the task of automatic flight control was to eliminate
shortecomings which were put up with in favor of certain advantages
in an aircraft (cf. the "dutch roll" in the case of the Boeing
707) or to relieve the pillot (autopilot).

Incorperation of the flight control system intérthe design /172
cycle asnshown in Fig., 1 led to concepts which have become known
under the name CCV (contrcl configured vehicle) in English-
speaking areas. Figure 2 shows a list of such concepts. If
various CCV concepts are applied consistently, we can achieve
about a 15% reduction in takeoff weight (for a given range) or
an increase in range (fof a given takeoff welight) of 11% in
the most favorable case, as shown in Fig. 3. The data shown
here have been taken from a corresponding study by the Boeing
Company.

The restiofuthis paper will be concerned only with the
enhancement of performance obtained by sacrificing inherent
static longiltudinal stability.

*The results presented in this paper have been taken from a cor—
responding Messerschmitt-Bdlkow-Blohm study ("Jet-controlled
combat alrcraft," Volume 2, Configurations and Flight Performance,
MBB Report No 791-2-71).

¥%#Numbers in the margin indicate pagination in the foreign text.
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2. Statile Longitudinal Stability and Trim Drag

As can be seen from Fig. 4, trim drag consists of the
following components:
a} the portion resulting from increased and reduced
loads on the wing produced by the elevator;
b) the induced drag of the elevator, and
¢) the downwash components assocliated with elevator 1ift.

By shifting 11ft from the wing to the elevator, we obtain
the optimal distribution of elevator 1ift and total 1ift shown
in Fig. 5 under simplifying conditions for given elevator/wing
area ratios. The plotted stability limits show.the order of /173
maghnitude of drag gains which are to be obtained by applying
stability requirements. The curve optimum in Fig, 5 is shifted
toward smaller elevator/total 1lift ratios by tilting the elevator
1ift vector here, taking downwash behind the wing into considera-
tion, as shown in Fig. 6 using a drag polar.

Figure 7 shows the relationship between static longitudinal
stability and the elevator 1ift necessary for trim. It should
be noted here that, as shown, the expression Ax/%u, employed in
the rest of this paper, is not identical to the stabildty index
BcM/BcA. The effect of the center of gravity position on induced
drag 1s shown in Fig. 8. The values in this graph apply to a
special design, shown in Fig. 11. Flight condltions of altitude =
= 0, Mach number = 0.8 and load factor N = 5 represent an arbitzary
high-1ift condition. With a center of gravity position of Ax/fu =
= 0.02, the alrecraft behaves neutrally. If the aircraft's center
of gravity is shifted aftward, the elevator receives more and
more 1ift, while the wing 1s relieved and operates with a more
favorable 1ift coefficient for its.polars. The additional
induced drag on the elevator reduces this effect to a greater
and greater extent as its fraction of total 1ift increases.



Figures 9 and 10 demonstrate -~ on the baslis of wind-tunnel
data -~ the increases in drag and 1ift accompanying a change in
the stability index. A series of méasurements were made at
various angles of attack and elevator longitudinal dlhedral
angles, and those results were combined which produced moment
equilibrium at the three given reference points (centers of é;zﬂ
gravity). The model used was a configuration corresponding to
that shown in PFig. 11.

3. Enhancement of the Performance of Given Alircraft

Figure 11 shows two views of a basiec configuration used for
performance and weight analysis. Pronounced wing sweepback, a
two-stage intake and an afterburner give this aircraft supersonic
capabilities. Good maneuverability 1n the subsonic region is
made possible by low surface loading and a high thrust-to-welignt

ratio.

Considerable trim-drag reduction by shifting the center of
gravity can be achieved in flight states with high load factors
(Fig. 12). PFor flight at 1 g, in which induced drag plays a
subordinate role, the gains are insignifiecant. The variation in
maximum load factor with center of gravity position is shown in
Fig. 13.

Specific holding time and "curve(d) climb".:.capability are
shown in Figs. 14 and 15. Lines of constant elevator volume are
plotted as parameters 1n both figures. It is found that in the
cagse of "curve(d) climb" capabllity, the effect of the size of
the elevator {(elevator volume) is relatively small. The reason
for this 1lies in the small percentage of detrimental drag out of
total drag for high 1ift coefficients. Figure 16 summarizes the
results of the preceding studies, among other things.



4. Weight Gains in New Desilgns /175

The adaptation of an aircraft:déSign to given maneuver
performance is primarily accomplishéd via power plant thrust and
wing size. In the case at hand, maneuvering conditions are
represented by a l-g supersonic and a U-g subsonic case (Fig. 17).
On the right branch of a curve, the aircraft is dimensioned on
the basis of subsonic requirements; supersonic requirements are
over-satisfied as the result of high surface loading. At the
break in the curve, dimensioning is based on both types of
requirements simultaneously. The best takeoff welghts are obtained
with inereasing displacement of the center of gravity aftward and
higher surface loads. It should be noted that all designs have
been lald out for the same mission radius of 150 nautical miles. _
Figure 18 shows the summarized results of a configuration study.
In each case, the minimum takeoff welghts of three different con-
figuration types have been plotted over the stability index
dey/3cy.  An important outcome of this study is the different
reactions of the three configurations to a change in static
longitudinal stability. The "tail" aircraft is aerodynamically
superior to the delta and canard configurations because of its
wing design (larger aspect ratio). It flies with a more favorable
drag/1ift ratio to satisfy maneuvering requirements, due to its
better polars. When the stability index is varied by a gilven
amount, the percentage gain in drag is smaller for the aero-
dynamically superior configuration.

5. Summary

The advantages of artificial longitudinal stabllity are
made use of primarily with high 1ift coefficients, the more so /176
the flatter the wing-body drag polar. The most important
results of the performance and welght analysis deseribed above
are summarized in Fig. 19.
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Fig. 1. Design cycle.
Key: a. Geometry f. Optimization
k. Aerodynamics g. Control system
¢. Propulsion h. Conventional design
d. Structure and welght i. CCV design
e. Power/performance
0 Performance enhanced by dispensing with inherent
stability
Direct 11ft contrel
Precisicon flight
0 Improvement of flight characteristics: All-weather flight
Autom. flight
management
0 Reduction of timewlse structural loads
Suppression of flutter
o Gust reduction (ride smoothing)

Fig,

2.

CCV

concepts.
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Key: a. Relatlive takeoff weight ¢.d. Flutter control
b. Relative range e. Maneuver load relief

¢. Conventional design . CCV design
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Fig. 4. Trim drag.
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Fig. 5. Reduction of induced drag.

Key: a. Induced drag e. With downwash effect
b. (Elevator 1ift)/(total 1ift) f. Limit of stability
¢. Tall elevator g. Tandem aircraft

d. Canard elevator
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Fig. 6. Downwash effect.
Key: a. Without downwash ¢. Reduced stability A = 1ift
b. With downwash d. Increased stability W = drag
H = elevator
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Key: a. Trimmed aircraft without downwash effect
b. Distance between moment reference point and center of gravity
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Fig. 11. Basic configuration.
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Fig. 12. Effect of CG position on trim drag.
Key: a. Trim drag coefficlent

b. Distance between moment reference point and center of gravity
¢. Basic configuration
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Fig. 13. Effect of CG positlion on nonsteady load factor,

Key: a. Nonsteady load factor

b. Dilstance between moment reference point and center of gravity

¢. Basic configuration
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Key: a. Change in specific holding time

|

Effect of CG poslition on specific holding time.

b. Distance between moment reference point and center of gravity
c. 70%, normal and 130% elevator volume

d. Basic configuration
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Rate of ¢limb

a
b. Distance between moment reference point and center of gravity
¢. 70%, normal and 130% elevator volume

d. Basie configuration

aAx _ . Ax _ _
-[/-‘. ‘ 03 7; 20
RELATIVE ' .
Specific Range . 100% 101.5 o
RELATIVE MAX. load factor=
Me-.6 100% 123%
Rate of climb - - .~F7fs
T M= 6,Ncbg 25 - 83
Rate of climb ~ .- . ~FT/s
M= .9, N=63g 8% 173
"Rate of climb - - ~F/S _ ,
M6, M=lg 12 -1

Fig. 16. Performance enhancement by artifical
stabillty.
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Fig. 17. Effect of surface loading and CG position on
takeoff weight.

Key: a. Takeoff weight d. Dimensioned by supersonic
b. Area loading requirements: eclimbing capa-
¢c. "Tail" aircraft bility =

e. Dimensioned by subsenic require-
ments: climbing capablility = ...
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Fig. 18. Effect of stability index on minimum takeoff

welight.
Key: a. Takeoff weight ¢. "Tail" aircraft
b. Stabllity index d. Canard configuration

e, Delta configuration
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By applying the principle of artificial stability, it is possible
to achieve the following improvements with an instability index
of 20%:

o Drag, 15-20%

o Climbing capability with high load factors, 60-~100 ft/sec

© Maximum load factor, ~20%

0 Takeoff welght with new design, 5-10%

Fig. 19.
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